Learning Structural Weight Uncertainty for Sequential Decision-Making
نویسندگان
چکیده
Learning probability distributions on the weights of neural networks (NNs) has recently proven beneficial in many applications. Bayesian methods, such as Stein variational gradient descent (SVGD), offer an elegant framework to reason about NN model uncertainty. However, by assuming independent Gaussian priors for the individual NN weights (as often applied), SVGD does not impose prior knowledge that there is often structural information (dependence) among weights. We propose efficient posterior learning of structural weight uncertainty, within an SVGD framework, by employing matrix variate Gaussian priors on NN parameters. We further investigate the learned structural uncertainty in sequential decisionmaking problems, including contextual bandits and reinforcement learning. Experiments on several synthetic and real datasets indicate the superiority of our model, compared with state-of-the-art methods.
منابع مشابه
Efficient Methods for Near-Optimal Sequential Decision Making under Uncertainty
This chapter discusses decision making under uncertainty. More specifically, it offers an overview of efficient Bayesian and distribution-free algorithms for making near-optimal sequential decisions under uncertainty about the environment. Due to the uncertainty, such algorithms must not only learn from their interaction with the environment but also perform as well as possible while learning i...
متن کاملA Bayesian Approach to Multiagent Reinforcement Learning
A Bayesian Approach to Multiagent Reinforcement Learning and Coalition Formation under Uncertainty Georgios Chalkiadakis Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2007 Sequential decision making under uncertainty is always a challenge for autonomous agents populating a multiagent environment, since their behaviour is inevitably influenced by the behaviou...
متن کاملDecision making under uncertainty: a comparison of simple scalability, fixed-sample, and sequential-sampling models.
The purpose of this article is to investigate the learning and memory processes involved in decision making under uncertainty. In two different experiments, subjects were given a choice between a certain alternative that produced a single known payoff and an uncertain alternative that produced a normal distribution of payoffs. Initially this distribution was unknown, and in the first experiment...
متن کاملUniversity of Alberta NEW REPRESENTATIONS AND APPROXIMATIONS FOR SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY
This dissertation research addresses the challenge of scaling up algorithms for sequential decision making under uncertainty. In my dissertation, I developed new approximation strategies for planning and learning in the presence of uncertainty while maintaining useful theoretical properties that allow larger problems to be tackled than is practical with exact methods. In particular, my research...
متن کاملSequential climate change policy
Successfully managing global climate change will require a process of sequential, or iterative, decision-making, whereby policies and other decisions are revised repeatedly over multiple decades in response to changes in scientific knowledge, technological capabilities, or other conditions. Sequential decisions are required by the combined presence of long lags and uncertainty in climate and en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.00085 شماره
صفحات -
تاریخ انتشار 2017